- 6. Di Luzio, N. R., JAOCS, 37, 163 (1960). 7. French, J. E., and B. Morris, J. Pathol. and Bacteriol., 79, 11
- (1960).
 8. Day, A. J., Quart. J. Exptl. Physiol., 45, 220 (1961).
 9. Wirtschafter, Z. T., and M. G. DeMerritt, A.M.A. Arch. Pathol., 67, 146 (1959).
 10. Dole, V. P., J. Clin. Invest., 38, 275 (1959).
 11. Van Handel, E., and D. B. Zilversmit, J. Lab. Clin. Med., 50, 152 (1957).
- 12. Gaebler O. H., Am. J. Clin. Path., 15, 452 (1945).
- Koch-Weser, D., E. Farber, and G. Popper, A.M.A. Arch. Pathol., 51. 498 (1951).
 14. Recknagel, R. O., B. Lombardi, and M. C. Schotz, Proc. Soc. Exptl. Biol. and Med., 104, 608 (1960).
 15. Rechnagel, R. O., and B. Lombardi, J. Biol. Chem., 236, 564 (1961)
- (1961).
 (1961).
 16. Lacquet, A. M., A.M.A. Arch. Pathol., 14, 164 (1932).
 17. Hampton, J. C., Acta Anat., 32, 262 (1958).

[Received November 15, 1961]

Purification of Erucic Acid by Low-Temperature Crystallization

J. W. HAGEMANN, K. L. MIKOLAJCZAK, and I. A. WOLFF, Northern Regional Research Laboratory,¹ Peoria, Illinois

Abstract

Purification of erucic acid for laboratory use by low-temperature crystallization from aqueous acetone, ethanol, and methanol has been investigated. Two crystallizations of technical grade commercial acid (76-86%) from acetone-water (5:1) provided products of 94-98% purity, depending on the original composition; residual impurities were primarily C₂₀ monoene and C₂₂ saturated acids.

CONVENIENT laboratory procedure was desired for A purification of erucic acid for other chemical studies. Low-temperature crystallization procedures employing aqueous systems in conjunction with other methods have been described previously (1-4). Work has also been reported in which nonaqueous solvents (5-7) were employed. One of these (7) in our hands gave results inferior to the procedures described here, which use as crystallization solvents, acetone, ethanol, and methanol, with varying amounts of water. Evaluation of product purities by gas-liquid chromatography (GLC) (8) provided more adequate characterization than that given by most previous investigators.

Table I shows the composition of the starting materials. The mixed acids from *Crambe abyssinica* seed oil were chosen for investigating application of our crystallization techniques to a natural erucic acid source of lesser erucic acid content than the technical product. Crambe abyssinica is a heavy-seeding annual of the Cruciferae family, having good crop potential and widespread adaptability for growth in the U. S., and its oil has the highest erucic acid content of any cruciferous seed oil analyzed (9). Tables II, III, and IV show results of the crystallization experiments. In each case the same solvent combination and temperature conditions were used throughout a particular run.

GLC was used for purity evaluations; there was no significant difference in iodine value between erucic acid and the less pure products from the filtrates.

Of the three solvent systems, acetone-water was the most effective under the test conditions. That solvent gave the most efficient removal of C_{18} polyunsaturated acids from erucic in the purification of mixed acids from Crambe abyssinica oil. The most persistent impurities were eicosenoic, behenic, and oleic acids. Optimum purification of erucic acid from sources such as *Crambe* oil was not achieved by this procedure alone. However when a commercial concentrate (86%) is used as the raw material source, the method conveniently provides working quantities of purified erucic acid with adequate recovery.

Experimental

Materials. Ground seeds of Crambe abyssinica (270 g, air-equilibrated basis) were extracted overnight in a Soxhlet apparatus with petroleum ether (30-60C). Most of the solvent was evaporated on a steam bath at atmospheric pressure, and the remainder was removed in vacuo. The oil (102.1 g) was then refluxed with 1 l of 0.8 N ethanolic KOH under nitrogen for 3 hr. Water was added to the soap mixture and it was then extracted with ethyl ether to remove unsaponifiable matter (6.27 g), acidified with dilute HCl, and the free fatty acids were recovered (95.1 g)and used for the purification experiments. Two batches of an erucic acid concentrate used in

these experiments (76 and 86% pure by GLC) were purchased from the Archer-Daniels-Midland Co.

Crystallization Procedure. The erucic acid (10 g)was first dissolved in the organic solvent (20 ml). Measured amounts of water and the organic solvent were then added alternately to this solution in such a way that the resultant mixture became clear after slight warming on a steam bath. Once the proper solvent ratios were found (Tables II, III, and IV), this procedure was not repeated until a different solvent ratio was desired. The mixture was then cooled immediately and held for 1 hr at the crystallization temperature being investigated. The crystals were rapidly filtered, without washing with solvent, onto Whatman No. 1 filter paper, in an unchilled Buchner funnel, and then placed in a vacuum desiccator to remove last traces of solvent and water. After determining the weight and withdrawing a sample for methyl ester preparation, the second crystallization was done using the same conditions as the first.

Methyl Esters. The methyl esters for GLC an-

TABLE I Composition of Starting Material by Gas-Liquid Chromatography*

Chain length	Commercial	Crambe abyssinica seed oil acids			
	86%	76%	56%		
C12S ^b	Trace				
C14S			Trace		
C16S	0.2	0.2	2.4		
C16I			0.4		
C18S	0.2	0.6	0.5		
C18I	1.9	1	18.0		
C18II	1.6	}9.1	9.0		
C18III	0.1		6.7		
C20S	0.4	1.8	0.7		
C20I	7.2	9.9	4.2		
Č20II	Trace				
Č ₂₂ S	1.8	2.9	0.8		
C	86.0	76.0	56.0		
C22II	0.2				
C2211	0.5	1	0.3		
Other			0.3		

^a Area percentage of methyl ester peaks. ^b I denotes the monoene; II, the diene; III, the triene; and S, the saturated fatty acids.

¹ A laboratory of the Northern Utilization Research and Develop-ment Division, Agricultural Research Service, USDA.

TABLE II											
Purification	\mathbf{of}	Erucic	\mathbf{A} and \mathbf{A}	with	Aqueous	Aceton					

% Erucie	5	Solvent syste	-m		Erucic acid and major impurities ^a										
acid in starting material	Acetone: H2O (v/v)	Temp	Ml/g solute	Product	Cz2I b	CısI	C20S	C20I	C228	C241	Other	Mp of erucic			
		°C									·(°C			
56	4:1	-11	5.0	1st 2nd 3rd	77(84)° 86(73) 90(69)	$9.4 \\ 4.3 \\ 1.3$	1.4	$2.5 \\ 1.4$	$\begin{array}{c}1.6\\2.8\\2.7\end{array}$	1.2	3.6 C18[I	$25-32 \\ 28-31 \\ 30-32$			
75	4:1	-11	5.0	lst 2nd 3rd	$82(81) \\ 89(75) \\ 90(73)$	2.1	1.3 1.4	$5.9 \\ 1.7 \\ 1.4$	$3.3 \\ 3.2 \\ 3.2$	1.8 1.6	1.2 C218	27 - 31 29 - 32 30 - 32			
	5:1	-11	5.8	1st 2nd 3rd	91(80) 93(72) 90(60)	$\begin{array}{c} 2.1 \\ 0.9 \\ \end{array}$	 1.0	$3.3 \\ 1.0 \\ 0.9$	$2.4 \\ 3.2 \\ 3.7$	· · · · · ·		$28-31 \\ 30-31.5 \\ 30.5-32$			
85	5:1	11	5.8	1st 2nd	94(89) 98(84)	 		1.9 0.6	2.0 0.8			29 - 31.5 29 - 31			
	5:1ª	-11	5.8	1st 2nd	92(89) 99(78)		1.0	$3.2 \\ 0.8$	0,6	1.1		$\begin{array}{c} 27.5 - 30 \\ 30 - 31.5 \end{array}$			
	5:1	-11	5.8	1st 2nd	$94(87) \\ 98(79)$		·	$\begin{array}{c} 1.8 \\ 0.7 \end{array}$	$\frac{2.7}{1.5}$			$29 - 31 \\ 31 - 32$			
	5:1	+ 7	5.8	1st 2nd	$91(75) \\ 94(64)$,		2.8 1.8	2.7	·····	1.2 C22H	$\begin{array}{c} 28.5 - 30 \\ 30 - 31.5 \end{array}$			
	10:3	+10	6.3	lst 2nd	$91(78) \\ 96(64)$	$2.2 \\ 0.8$		5.4 2.0	$1.7 \\ 0.7$	·····		$28.5 - 31 \\ 29 - 30.5$			

 $^{\rm a}$ Area percentage of methyl ester peaks. $^{\rm b}$ I denotes the monoene, II the diene, and S the saturated fatty acids.

 $^{\rm c}$ Recovery based on the amount of erucic acid in starting material. $^{\rm d}$ Scale of operation 50 g starting material instead of 10 g.

TABLE III Purification of Erucic Acid with Aqueous Ethanol

% Erucic acid in starting material	8	olvent syst	em	1	Erucic acid and major impurities "										
	EtOH: H2O (v/v)	Temp	Ml/g solute	Product	C22I h	C168	СъЛ	C1511	C208	C201	C22S	C24I	- Mp of erucie °C.		
		°C													
56	3:1	11	4.0	1st 2nd 3rd	66(86)° 69(76) 76(66)	$2.0 \\ 1.6 \\ 1.2$	$\begin{array}{c} 22\\17\\12\end{array}$	2.1 1.3	 	$2.3 \\ 2.6 \\ 1.8$	$2.2 \\ 3.8 \\ 4.2$	$1.4 \\ 1.5 \\ 1.5$	Liquid 22-28 25-30		
	3:1	11	5.8	1 st 2 nd	$71(85) \\ 79(81)$	$1.6 \\ 1.2$	18 12		1.7	3.5 1.8	$\frac{2.8}{3.5}$		Semisolid 26–31		
85	3:1	-11	5.8	1st 2nd 3rd	92(96) 95(95) 95(88)		$\begin{array}{c} 1.4\\ 1.4\\ 0.9\end{array}$	······	·····	$ 4.6 \\ 3.4 \\ 3.8 $	$\begin{array}{c} 0.5\\ 0.5\end{array}$	1.0	$\begin{array}{r} 27 - 30 \\ 28.5 - 30 \\ 28.5 - 30 \end{array}$		
	3:1	+ 7	5.8	1st 2nd	$91(90) \\ 93(83)$	·····	$2.1 \\ 1.4$	•	 	$5.0 \\ 3.6$	$1.1 \\ 0.7$		26.5 - 30 28 - 31		
	5:2	+11	6.8	1st 2nd	89(96) 88(90)	·····	$2.1 \\ 1.5$	·	 	$\begin{array}{c} 6.7 \\ 7.7 \end{array}$	1.0 1.1		$26-29\\28-30$		
i	5:1	11	5.9	1st 2nd	93(86) 96(78)	 ,	$\begin{array}{c} 1.1 \\ 0.7 \end{array}$	·····	$\begin{array}{c} 1.0 \\ 0.9 \end{array}$	$\begin{array}{c} 4.4 \\ 2.3 \end{array}$	0.6		27.5 - 30 29.5 - 30.5		

^a Area percentage of methyl ester peaks.
 ^b I denotes the monoene, II the diene, and S the saturated fatty acids.
 ^c Recovery based on the amount of erucic acid in starting material.

TABLE IV Purification of Erucic Acid with Aqueous Methanol

% Erucic acid in starting material	Solvent system			1	Erucic acid and major impurities a										
	MeOH: H2O (v/v)	Temp	Ml/g solute	Product	Caalp	C168	! - C188	ĊısĨ	CisII	CisIII	CzoS	C20I	C22S	C₂₁I	Mp of erucic
		°C											í		°C
56	6:1	11	6.8	1st 2nd 3rd	63(99)° 66(91) 72(91)	$1.7 \\ 1.1 \\ 1.5$	1.6 1.1	$\begin{array}{c} 22\\17\\14\end{array}$	$2.4 \\ 5.0 \\ 1.1$	 	2.0	$3.7 \\ 2.8 \\ 3.6$	$2.1 \\ 1.7 \\ 2.7$	$2.3 \\ 1.9 \\ 1.9$	Liquid 22–28 23–31
	8:1	-11	4.4	1st 2nd 3rd	66(95) 73(92) 78(88)	$1.9 \\ 1.5 \\ 1.3$	1.3 1.0	$19 \\ 14 \\ 7.7$	$2.0 \\ 1.7 \\ 2.9$	 1.4	 	$3.6 \\ 3.1 \\ 3.2$	$2.2 \\ 2.0 \\ 2.7$	$2.1 \\ 1.8 \\ 1.3$	$21 - 30 \\ 25 - 30 \\ 25 - 30$
85	8:1	-11	4.4	1st 2nd 3rd	88(97) 88(94) 88(90)	····	····	 	 	 	$0.9 \\ 0.9 \\ 1.0$	5.1 5.4 5.1	$\begin{array}{c} 1.4\\ 1.3\\ 1.7\end{array}$	$2.0 \\ 1.6 \\ 2.0$	$\begin{array}{c c} 27 - 30 \\ 27 - 30 \\ 28 - 30 \end{array}$

^a Area percentage of methyl ester peaks. ^b I denotes the monoene, II the diene, and S the saturated fatty acids. ^c Recovery based on the amount of erucic acid in starting material.

alysis were prepared by three different methods: by treatment with diazomethane, by refluxing with 1% sulfuric acid in methanol, and by treatment with 2,2-dimethoxypropane (10). No appreciable difference in composition was found among products prepared by any of the three methods.

Acknowledgment

The authors express appreciation to Juanita R. Robertson, Karen A. O'Connor, and T. K. Miwa for technical assistance and advice, and to Quentin Jones of the Crops Research Division of the USDA for the Crambe abyssinica seeds.

REFERENCES

- 1. Rölz, E., and M. Wiener, Ber. 67B, 295 (1934). 2. Hadorn, H., and K. W. Biefer, Mitt. Lebensm. Hyg., 47, 84
- Hawin, L., L., (1956).
 Foreman, H. D., and J. B. Brown, Oil and Soap, 21, 183 (1944).
 Foreman, A. W., and M. Mattikow, J. Am. Chem. Soc., 48, 968 (1977).

- (1926).
 5. Brown, J. B., Chem. Revs., 29, 333 (1941).
 6. Hilditch, T. P., P. A. Laurent, and M. L. Meara, J. Soc. Chem. Ind., 66, 19 (1947).
 7. Pasero, J., M. Naudet, and M. J. Perrot, Rev. franc corps gras, 6. 301 (1959).
 8. Miwa, T. K., K. L. Mikolajczak, F. R. Earle, and J. A. Wolff, Anal. Chem., 32, 1739 (1960).
 9. Mikolajczak, K. L., T. K. Miwa, F. R. Earle, I. A. Wolff, and Q. Jones, JAOCS, 38, 678 (1961).
 10. Radin, N. S., A. K. Hajra, and Y. Akahori, J. Lipid Research, 1, 250 (1960).

[Received November 21, 1961]